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Abstract

A reliable Cu—Cu bonding joint was achieved by using the highly sinterable Cu nanoparticle paste. Pure copper
nanoparticles used in the preparation of nanoparticle paste were synthesized through simple routes, with an average
size of 60.5 nm. Under an Ar-H, gas mixture atmosphere, the Cu nanoparticle paste exhibited large areas of fusion after
sintering at 300 °C and reached a low electrical resistivity of 11.2 pQ cm. With the same temperature as sintering, a
compact Cu-Cu bonding joint was achieved under the pressure of 1.08 MPa and the shear strength of the joint could
achieve 31.88 MPa. The shear strength and the elemental composition of the bonded joint were almost unchanged
after aging test, which proves that the Cu—Cu bonding with this process has excellent thermal stability.
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Background
In order to overcome the limitations of the Moore’s law in
the continuous development of integrated circuits, the ap-
pearance of the advanced three-dimensional integrated
circuits (3D-IC) technology is becoming a leading trend.
This new generation of technology can help the high-
density integrated chips to achieve powerful performance,
small form factor, low power consumption, and low cost
[1-3]. The Cu—Cu bonding is one of the most critical
technologies to achieve the 3D integration structure. In
the past years, Sn-based lead-free solders have been widely
used in microelectronics packaging as bonding media.
However, the bump bridge failure caused by Sn overflow
in fine-pitch bonding; the limitations in power devices
with high operation temperature and the electromigration
phenomenon are still the challenges in Sn-based solder
joints, and these issues are becoming more critical in 3D-
IC packaging with the shrinking of pitch size and the
increasing of bump density [2].

On the other hand, Cu has always been regarded by re-
searchers as an excellent interconnection media because it
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can provide low electrical resistivity, high thermal conduct-
ivity, high thermal cycling performance, and good resist-
ance to electromigration [4, 5]. The main reason for
limiting the practical use of Cu is its high bulk melting
point (1083 °C), which results in the high bonding
temperature. With the rapid advancement of nanotechnol-
ogy, Cu—Cu bonding with surface-melted Cu nanoparticles
induced by size effect becomes an appropriate solution for
significantly reducing the bonding temperature, and a high
strength Cu—Cu joint can be obtained at a relatively low
temperature of 350 °C through this method [6]. However,
achieving a compact bonding always requires the introduc-
tion of large bonding pressures [6, 7]. In order to meet the
strict packaging requirements of thermal sensitive and
fragile chips, the bonding temperature and bonding pres-
sure need to be further reduced.

To face the challenges, we proposed a Cu—Cu bonding
approach by the highly sinterable Cu nanoparticle paste
at a low temperature of 300 °C, which can adapt to the
3D-IC demands. With this approach, a thermally stable
and high-strength bonding joint can be achieved under a
low bonding pressure and the protection of Ar-H,
(5% H,) gas mixture atmosphere.
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Methods

Preparation of Cu Nanoparticles and Cu Nanoparticle
Paste

In the typical synthesizing process, 1 g CuSO45H,0
was dissolved in 20 ml EG (ethylene glycol), and a
beaker containing the CuSO, polyol solution was
heated to 90 °C in a water bath with magnetic stir-
ring. Meanwhile, a three-mouth flask containing 2 g
NaPO,H,-H,0, 6 g PVP (polyvinyl pyrrolidone), and
80 ml EG was heated to 90 °C under the same condi-
tion. After 15 min of heating, the CuSO, polyol solu-
tion was poured into the three-mouth flask rapidly,
and the reaction had been completed after 25 min of
continuous heating. The Cu nanoparticles were col-
lected by washing the final dispersion for five times
with ethanol and deionized water at 8500 rpm via
centrifugation. The Cu nanoparticle paste was fabri-
cated by mixing 65 wt% synthesized Cu nanoparticles
and 35 wt% butanol at 2000 rpm for 5 min through
vacuum mixer.

Sintering and Bonding Process

The sintering specimens were prepared by coating the
Cu nanoparticle paste on nonconducting glass slides,
and the sintering process had been completed by heating
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the specimens at the temperature ranging from 200 to
300 °C for 60 min. The bonding samples were prepared
by a 3 x 3 x 0.5 mm?® upper Cu substrate, a 6 x 6 x 1 mm>
lower Cu substrate, and a uniformly coated Cu nanoparticle
paste layer. In the bonding process, bonding samples were
heated to 300 °C for 60 min, under a bonding pressure of
1.08 MPa. The Ar-H, (5% H,) gas mixture was introduced
in the whole sintering and bonding process to prevent the
oxidation. For aging test, the bonded Cu—Cu samples were
heated to 150 °C for 200 h in ambient atmosphere.

Characterization and Measurement

The morphological features of Cu nanoparticles, sin-
tered Cu nanoparticle paste, Cu—Cu bonding interface,
and the fracture surface of bonded joints were observed
by a scanning electron microscope (FEI Nova Nano
SEM 450). The high resolution detail of Cu nanoparti-
cles was investigated by a transmission electron
microscope (FEI Tecnai G2 20 U-TWIN). The size dis-
tribution of Cu nanoparticles was analyzed by Nano
Measurer software. XRD patterns of Cu nanoparticles
were determined by high-resolution X-ray diffractom-
eter (PANalytical PW3040/60), and the shear strength
of bonding joints was measured by Micro Materials
Testing Platform (DAGE-4000Plus Bond).
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Fig. 1 a The SEM image, b the TEM image, ¢ the size distribution and d the XRD patterns of the synthesized Cu nanoparticles
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Results and Discussion
The morphology of the synthesized Cu nanoparticles is
shown in Fig. la. The Cu nanoparticles present good
homogeneity and dispersibility without any hard ag-
glomeration. Figure 1b shows the high resolution TEM
image of Cu nanoparticles, and the nanoparticles are
determined as quasi-sphere shapes. As illustrated in
Fig. 1c, the monodispersed nanoparticles are concen-
trated in the 40 to 80 nm range, with an average size of
60.5 nm. Figure 1d shows the X-ray diffraction (XRD)
patterns of Cu nanoparticles. In the XRD patterns, sig-
nificant reflections can only be detected at 43.47°,
50.67°, and 74.68°, which represent the (111), (200),
and (220) planes of Cu crystal, respectively. Therefore,
the synthesized Cu nanoparticles can be confirmed as a
single-crystal Cu without any impurity phases.

The sintering performance of nanoparticles is a key
factor for achieving high strength bonding [8, 9].
Figure 2a—e shows the morphologies of the sintered Cu
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nanoparticle paste films after sintering at the
temperature from 200 to 300 °C for 60 min. It can be
observed that the Cu nanoparticles did not provide suf-
ficient interconnection after sintering at 200 °C. As the
sintering temperature is increased to 225 and 250 °C,
surface melting phenomenon is obvious and neck
growth occurs between the adjacent nanoparticles.
Small clusters are formed when the sintering temperature
is raised to 275 °C. After sintering at 300 °C, the well-
sintered nanoparticle paste shows good fluidity and large
area of melting; nanoparticles merge into numbers of large
clusters, and effective links are formed. Figure 2f shows the
variation in resistivity of the sintered solder as the sintering
temperature increases. As depicted by the curve, when the
sintering temperature is raised to 300 °C, the resistivity of
the sintered solder may be as low as 11.2 pQ cm.

The obvious morphology and resistivity changes of the
sintered nanoparticle paste at a relatively low temperature
can be described as a material transport process. The

resistivity with the increasing of sintering temperature
.

Fig. 2 The SEM images of the sintered nanoparticle pastes after sintering at a 200, b 225 °C, ¢ 250, d 275, and e 300 °C. f The variation of
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mechanism of this process is the atomic diffusion, which
can be accelerated by the reduction of interfacial energy
[10-12]. For two adjacent Cu nanoparticles, the neck
growth can be achieved at a low temperature when the Cu
atoms are removed from the grain boundary, since the
grain boundary diffusion needs much lower activation en-
ergy than lattice diffusion. The particle size is another key
factor in determining the sintering effect. As the particle
size decreases, the volume ratio of the grain boundary be-
comes larger, which results in a higher coalescence effi-
ciency of nanoparticles at the same temperature [13, 14].
A stable Cu-Cu bonding interface by using the
highly sinterable Cu nanoparticle paste was achieved at
300 °C for 60 min, under a low bonding pressure of
1.08 MPa, and an isothermal aging test was proceeded
at 150 °C for 200 h after bonding. Figure 3a shows the
schematic diagram of shear strength test and the tested
value of the bonded joint and the aged joint. The shear
strength of the Cu-Cu joint was determined by a
Micro Materials Testing Platform at a testing speed of
5 mm/min, and the test value of the bonded joint
reaches the shear strength of 31.88 MPa, which is a
high value for microelectronics packaging [15, 16].
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After the isothermal aging test, the shear strength of
the Cu-Cu joint shows a slight change, rising to
32.25 MPa. The cross-sectional structure of the Cu-Cu
bonding joint and the partially magnified bonding
interface were observed by emission scanning electron
microscopy, and the corresponding image is presented
in Fig. 3b, c. Under the bonding pressure, the Cu nano-
particle paste layer between two Cu substrates becomes
compact and exhibits few defects, due to the excellent
flowability of the nanoparticle paste at the sintering
temperature of 300 °C. Since both the nanoparticle and
the substrate are pure Cu, the sinterable Cu nanoparti-
cle paste achieves a high efficiency of surface diffusion
with Cu substrate, so that the upper and lower Cu sub-
strates are integrated into a whole part (Fig. 3b), and
the contact surface between the nanoparticle layer and
the substrate is becoming undistinguished (Fig. 3c).
Similar to the test results of shear strength, the micro-
structure of the Cu—Cu bonding interface shows little
changes after the isothermal aging test, as illustrated in
Fig. 3d. From the observations and analyses above, the
Cu-Cu bonding joints before and after aging test rep-
resent the similar microstructure and shear strength,
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Fig. 3 a The schematic diagram of shear strength test and the tested value of the bonded joint and the aged joint. b The cross-sectional SEM
image of the Cu—Cu joint. ¢ The partially magnified bonding interface after bonding at 300 °C for 60 min. d The Cu-Cu bonding interface after

Nanosolder layer

Lower Cu substrate




Li et al. Nanoscale Research Letters (2017) 12:255

Page 5 of 6

CuL CuL
Cuk

CuK
w) v
- >
= =
= 3
o )
O O

0
1Cu K & 1 CuK
i Energy i Energy

Fig. 4 The fracture surfaces of the Cu—Cu bonding interface a after bonding at 300 °C and b after aging test and the corresponding EDX spectra
J

which indicated that the Cu—Cu bonding process by
using the Cu nanoparticle paste can achieve high
strength and good thermal stability.

After the test of shear strength, the microscopic mor-
phological characteristics of fracture surfaces were
observed by SEM. As shown in Fig. 4, the fracture
morphologies of Cu—Cu bonding interfaces exhibit duc-
tile brittle fractures both before and after aging test. The
small-peak and elongated dimple-shaped structures of
the fracture surfaces indicate that the destructive
stretching has occurred at the Cu—Cu bonding inter-
faces, which demonstrates the large amount of fusion of
Cu nanoparticles and the effective interconnection
between the nanoparticle paste and the Cu substrate in
the bonding process. According to the corresponding
EDX spectra and the data analysis of fracture surfaces,
no more than 1% of the oxygen can be detected in Cu—Cu
joints. Before the aging test, the oxygen should be present
in the incomplete volatilized organic solutions of the
nanoparticle paste or the organic residues on the surface
of the synthesized Cu nanoparticles. However, the oxygen
content did not show any significant increase after aging
test. This result again demonstrates that the Cu—Cu bond-
ing interface is compact and thermally stable.

Conclusions

In summary, a reliable Cu—Cu bonding interface was
achieved by using the pure Cu nanoparticle paste, which
was mixed by the synthesized Cu nanoparticles and
organic solutions. The sintered Cu nanoparticle paste
film achieves a high sintering performance at 300 °C and

reaches a low resistivity of 11.2 pQ cm. The bonding
interface shows a stable and compact microstructure
after bonding at a low temperature of 300 °C for 60 min
under a low pressure of 1.08 MPa and the atmosphere
of Ar-H, gas mixture. The shear strength of the bonded
joint reaches a high value of 31.88 MPa and shows little
change after isothermal thermal aging test at 150 °C for
200 h. Besides, the microstructure and element compos-
ition of the bonding interface are almost unchanged be-
fore and after aging. Therefore, these testing results and
the simple bonding environment requirements confirm
that the Cu—Cu bonding by using the highly sinterable
Cu nanoparticle paste is a promising technology in the
application of 3D-IC packaging.
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